手机浏览器扫描二维码访问
0;”
“(d2){??v
=μv,
x∈Ω2,v|?Ω2
=
0;”
“......则特征值问题(d1)和(d2)分别有离散谱{λi}i∈n和{μi}i∈n.若对每一个
i∈
n,均有λi
=μi......
“...依据定理[1][6][11],可在平面r2上构建出一对具光滑边界(至少为
c1光滑的边界)的有界连通区域,它们是等谱的,但却非等距同构。”
“由此,可证等谱非等距同构猜想在三维有界区域中成立!”
.......
最后一点落下,徐川手中的圆珠笔放下,盯着书桌上的稿纸长舒了一口气,脸上也扬起了笑容。
眼神落在了旁边的日历,不知不觉间,时间已经到了六月初。
而距离费弗曼当初和他在办公室中发起挑战,时间已经过去了近两个月。
在过去的近两个月中,他借助此前对weyl-berry猜想的研究,利用xu-weyl-berry定理中的谱渐近定理,构造出了一个两两不相交的有界开域的集合。
但在利用拉普拉斯算子进行转化构建一对具光滑边界的有界连通区域的时候,他遇到了一些麻烦。
拉普拉斯算子是n维欧几里德空间中的一个二阶微分算子,定义为梯度grad的散度div。
它适应于椭圆型偏微分方程,也可以用来描述物理中的平衡稳定状态,如定常状态的电磁场、引力场和反应扩散现象等。
这是解决等谱问题的关键,但它在特征值的计算方面无法构建出的稳定的闭willre超曲面,也无法计算出常平均曲率。
这一度让他苦恼不已。
幸运的是,通过针对等谱问题与偏微分方程相关文献方面的搜索浏览,他找到了一个适合的补救办法。
保hamilton系统辛结构的辛几何算法、保李群微分方程的李群方法。
这两种于上个世纪日不落国数学家提出的算法,能长时间精确模拟微分方程的变化,且能近似保持微分方程动量和能量守恒特性。
而这两个特性刚好可以应用到他的数学计算中,能恰到好处的填补上最后一块漏洞,让他完成最后的构建。
......
盯着稿纸上的答桉,徐川脸上扬起了笑容。
他这边已经完成了自己的工作,不知道的费弗曼那边的进度怎么样了。
三个月的时间,哪怕是加上此前两人的共同合作时间,也只有四个多月。
四个月的时间,要解决一个世界级难题,即便是对于一名菲尔兹奖得主而言,难度也不小。
他能解决,依赖的是前世对分析学和拓扑学的研究,再加上这辈子解决的第一个数学难题就是等谱方向的,才有这么快的速度。
而费弗曼那边,就不清楚了。
不过想必他提出这份挑战,肯定是有些把握的。
毕竟费弗曼本身就是偏微分方程领域的顶级大牛,在光滑流形方面的研究也有独特之处。
玛伦利加城记 叽里咕噜的风的作品首辅大人后悔了我已宠冠六宫 重回五零,我带空间物资当咸鱼 万古长生:带女友从小木屋开始 末世天灾:小人物的生活 凉风入梦 柳眠眠沈祁谢凌渊首辅大人后悔了我已宠冠六宫免费全文无删减阅读 闺蜜双穿七零,成为妯娌不分离 隐婚影帝后甜哭了 首辅大人后悔了我已宠冠六宫主角柳眠眠沈祁谢凌渊 长生:我在巡甲司肝经验 巅峰出道,豪门大佬鲨疯娱乐圈 首辅大人后悔了我已宠冠六宫柳眠眠沈祁谢凌渊全集免费阅读 首辅大人后悔了我已宠冠六宫柳眠眠沈祁谢凌渊百度云 柳眠眠沈祁谢凌渊首辅大人后悔了我已宠冠六宫最新全文免费阅读无弹窗 汉末大司马 死字旗下:一个囚徒的逆袭 神女的快穿计划 别人眼中废物活出别人梦想人生 路北方,今夜官血沸腾
一个浑浑噩噩的少年,在阳台吹风不小心掉了下去,死过一次的他,决定开始改变,故事从这里开始,他就是林浩...
男人一辈子最值得骄傲的事里包括服一次役,当一回特种兵,和世界上最强的军人交手。还有,为自己的祖国奉献一次青春,为这片热土上的人民拼一次命。这些,庄严都做到了。(此书致敬每一位曾为国家奉献过青春,流过血洒过汗的共和国军人!读者群号764555748)...
一个转世失败的神农弟子,想过咸鱼般的田园生活?没机会了!不靠谱的神农,会让你体验到忙碌而充实的感觉。师父别闹,就算我病死饿死从悬崖跳下去,也不种田,更不吃你赏赐的美食真香啊!本人著有完本精品农家仙田,欢迎阅读。QQ群42993787...
一朝重生,亲爹从军阵亡,亲娘病死,留下体弱的弟弟和青砖瓦房几间。无奈家有极品亲戚,占了我家房还想害我姐弟性命!幸得好心夫妻垂帘,才有这安稳日子过。偶然山中救得老道一位,得其倾囊相授修得一身好武艺。骤闻亲爹消息,变身潇洒少年郎,入了天下闻名的孟家军,立军功当将军,可是那个总阴魂不散的小王爷是要搞哪样?虾米?威胁我?...
苍茫大地,未来变革,混乱之中,龙蛇并起,谁是真龙,谁又是蟒蛇?或是天地众生,皆可成龙?朝廷,江湖门派,世外仙道,千年世家,蛮族,魔神,妖族,上古巫道,千百势力,相互纠缠,因缘际会。...
一张从始皇帝皇宫流传出的长生不老药地图,解开不死不灭之秘。一代名将,将守,从万人敌,到无人敌的重生之路!九龙吞珠读者交流群721466643)...